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TECHNICAL MmmANDm 1278

GENERAL SOLUTION OF PRANDTL‘S BOUKOARY-LAYER EQUATION*

By W. Mangler

Abstract: A method is described by meems of which the lsminar friction
layer at a wall with arbitrary pressure distribution may be
calculated from I?rsnit1rs boundary-layer equa.tions.
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VIII.

INTRomIoN
TRANSFORMATION OF THE BOUNDARY-LAYER EQUATIONS INTO THE

HEAT< ONMJCTION EQUATION
A SECOND TRANSFORMATION (NEIG~ORHOOD OF THE STAGNATION

mm”r )
TRANSFORMATION OF THE BOUNDARY-LAYER EQUATIONS INTO

TEE HEAT40NDUCTION EQUATION ACCORDING TO FRANIIM ‘
“m Mm-Es

THE NEW CALCULATION MR!JHOD

SUMMARY
REFERENCES

. symbols

X,y coor&ates parallel and vertical to the wall

U,v velocity components parallel and vertical to the well

u(x) prescribed velocity distribution

If stream function
,

u. reference velocity (free+tresm velocity)

L reference length (profile chord or half the profile circw
ference, respectively)

‘~ Reynolds numberRe=V

*“Die allgemeine L6sung der Prandtlschen Grenzschichtgleichungen.”
Lilientha14esellscha5t fiirLuftfahrtforschung B&icht 141, Oct. 1941,
PP. 3-7.
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1. INTRODUCTION
—.

●

The solutions of praudtl~s boundary-layer equations (reference 1)
known so far (compare Howarth~s report (reference 2) and K. Schr6der$~
lecture on the G6ttingen boundary-layer meet-) represent speci~
solutions inasmuch as they are valid only for special pressure
distributions and special initial values. For general application, the..
problem requires the solution of’how a velocity profile.prescribed at a
point on a solid VELU de~elops ~ong the ml under the influence of a
given pressure distribution.

A trsmsformation of the boundary-layer equations, &o far probably “-”

umlumwn,l will be given below tith the aid of which the-problen may ~e -
——

trace”dlack to one already known: the solution of the heat-conduction
equation. In order to enable, also, calculation of the;stagnation point”
profile, a second transformation is used which by a wholly malogous
process also leads to the solution of’a linear differential equation.
The connection between the new transformation and the transformation imto
the heat+onduction equation previously indicated byprandtl (refex
ence 3) and Mises (reference 4) is shown.

By means of the resulting calculation method, the laminar stagnation
point profile and the boundary layer on the circular cylinder may be

.-x

-i.—
-

..-:

.-

—

-.

calculated.

11( TRANSFORMATION

THE

w’

OF TEE BOUNDARY-LAYER EQIL4TIOl&INTO

HEAT-CONDUCTION EQUATTON

In calculating the laminar friction layer on a wingproflle for high
Reynolds nurcibers, one nm.ypresuppose the radius of curvat-we of the wall
as large in propotiion to the dimensions of the.boundary””layerso that
the wall curvature may be n@g3.ected, Tt enters into them.lculation ~.
only indirectly because the influence of the pressure dis-tributionalong
the wall, which is impressed on the boundary lajer from the outside -d . ..
which is known from measurements or calculation; is considered.

.-.— r
1
After coficlusionof this report ”theauth&~s attention was called ‘“

to a report by Plercy and R?eston (reference 12) In which a simi~
—

transformation of the boundary-layer equations is perfomned for the case ___ ,i_-
of a constant pressure distribution.

●

.
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If u and v denote the components of the velocity in the
friction layer in x- and y4irection, respectively; that is, parallel
or vertical to the wall y . 0, V, the kinematic viscosity of the air,
and U(x), the velocity distribution outside of the friction layer to
be calculated by means of Bernoulli.lsequation, u sad v must satisfy
the force equation

and the continuity equation

auavo—+—=
ax ay

(1)

(2)

The latter is to be fulfilled by introduction of the stream
function ‘$(x,y)

One may put

.
(2a)

~x,o) =0 (3a)

As boundary conditions one has at the wall the condition of no slip

U(xjo) = o, V(x,o) = o (3b)

and for large distance from the wall the end condition

U(x,w) = u(x)
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In addition; there has to be a suitable ini’tialcondition; u(O,y) must
-.—

be known. If the friction layer begins at a qtagnationpoint CU(0) = O],
d

the most’importaut case for the wing, one has to put .-

U(o,y) = o (4) —

. .

It is shown that a linear differential-equation may %e obtained
from the quadratic equation (l), by first solving (1] asymptotically
for large y, thus linearizing tith respect to
If L denotes a fixed reference length, Um a

Re
U@L

= ~, a Reynolds number, one may write (1)

small values of U- u. —.
constant”:%elocity,and “- =

-
also in the form

u -u

(
)J

La U-u ~La U-u-— .— —
U* ax U. u ‘—ay u.

For large y the terms of the right side are emall compared to those of
the left so that one obtains, for large values of y, a linear equation

‘(” - ‘)0 The latter may le truforme~ iIYbO the heat-.for the function
U:2 .

conduction equation by passing to new coordinates k,~.
defined by

These are

(6)

-.

.—

.
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thus

()( )a u-lp Yu’&—=—
a~u=zhumb

L=
%

If one finally puts

m-la

there results

and one obtains from (5) the

aJ=u(u-u)

% u:

differen{i.alequation

5

(7)

(8)

(9)
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or written differently

&_.a2c -L

[ 1

x a2c X a2~ -

@ a?i* =(E) M aqz ~ M bq

The boundary conditions now read

,

C(E,o) = o, Cq(E,o) = Z(E),

and the initlel condition for the case of the

$(OJ = o

The transformation determinant has the value

.

NACA TM 1278
—

.

L

~q( E,m) = O

stagnation”point

_Evx=u2(x)JFr
~x~y y

%2 ~2
—

A

is

—

— .

●

(lo)

—

(11)

(12)

*

-.— .

thus becomes zero at the stagnation point. If.lhere U is proportional_ _
to x, ~ becomes proportional X2 and q proportional-to xy so that
the strai@t line ~ = O corresponds to the straight line x = O
although the correspondence is not a unique, point by poi@ reversible _
one. Since thereby the boundary conditions sad the initial condition
are not infringed upon, this singukrity does not cause &@ disturbance.
For calculation of the stagnation point profile, however, one must turn
to other coordinates (compare section 111).

For a general solution of equation (10), one first calculates a _

xfirst approximation of ~ by putting the left side of (10) equal to
%

zero and satisfying the boundary and initial conditions (-h), (12). ““ “-
After introducing this first approximation intothe right-side one
determines a second approximation from (10) with known right side.
In this manner, the solution can, step by step; be improved by iteration.
The essential fact is that the first approximation satisfies both boundary,
conditions, and completely solve& equation (10) above all for large q,
where the solutions contain an essential singularity;

.-

..
.—

—

..●

w
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4
The iteration method may also be written as a series development.

If ~K df3nOtef3the difference of the Kth and (K - l)th approxi-

mation for &, One has

%

with ~K Satlsfyi~ the eqU8,ti0n (K=l,2, . . .. RlS0)

$&rn) =O(K> 1)

J

and at the atagnation point the initial condition

(13)

(14)

(15)

(16)



This is understood at once If equation (14) is sunmwd over K sm.dthe
resulting double sum of the right side rearranged. Therewith the
solution of the boundery-layer equation is traced back c-~letely to a
lmown problem, the treatment of the inhomogeneous heat<onduction
equation.

The shearing stress distribution T in the filction layer’is
obtained from

the displacement thiclmess

from
.-

and the momentum thiclness

from

——.

.

il=~.#L_:pY

—

●

✎ ✎

.-

.-

—

.

●

✎ ✍✎

.

—

.

.
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III. A SECOND TRANsFomTIoN OF THE STAGNATION

9

POINT)

!l?h’es@ulsrity of the transformation (6) at the stagnation point
(u(x) =xU’(o) + . . .) can he avoided if a further transformation is
appliedto equation (10).

If one puts

11= c3“

g.cp~

c FLU1 O=
Um

(17)

one obtains altogether a transformation which is regular also for x = O.
Moreover the new variables

(18)
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.—
r

(19) > ., .-

&e more suitable for representation of the lminar profiles than the
former ones because they are letter adapted to the cou?%e of the tJounda&y ““

layer, the thickness of which inoreases approximately like d%. If in
addition, one put’s

E(E)r(r) =— 1(0) =1 (20)
2C% ‘

.

(21)

The boundary conditions are

(22)

—.. .

.
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As init@l condition K(O,q) has to be prescribed so that the ortinary
differential equation originating from (21) for ~= O is satisfied
with the boundary conditions (22).

Since, with the aid of (17), Greents function of the linear
differential equation for the rectangular r6gion, which 3.sfoundby
putting the le~ side of (21) equal to zero, also may be guessed, the
singular transfcmzw.tion(6) could.as well be avoided and thq entire
calculation performed with the aid of equation (21); however, for the
numerical calculatim the use of equation (10) is more convenient.

Iv. TRANslmMATI ON OF THE BOUNDARY-IJUI!REQUATIONS INTO

THE HEAT-CONDUCTION EQUATION ACCORDING

TO ERANDTLANDMISE9

I?randtl(references) and Mises (reference k) have shown that one,
likewise, obtains a form of boundary-layer equations related to the
heat+onduction equation, if one introduces, instead of the distance
from the wall, the stresmfunctlon ~ as new independent variable

}

and puts

One must then solve the equation

(23)

(24)

(25)

.

.
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.—..
with the bountkry c“6nditions ““-”

.=.-

g*(E*,o) = <0* = 9+.
u. 1

+:=.. ..-----
b

(26)

g*(~*;@) = c1 J
and a stitably prescribed initisJ distrib&ion ~*(0,q*). Asymptotically
it is, for l=ge q*, also transformed into the heat-o.on@~tion. equation,
so that a similar iteration method could be”us%d”aa for Gquation (10).
An indication to that end is to be found in K&m& and ~llikan (refer- ‘“
ence 5); however, the disadvantageof this method is that here a

-. ,.—- -

singular point of the solution lies at the wall “aswell (the second —
.

derivative b2C* there become5infinitely lar~e), where& the solution _

hQ
—

-- -----—- ---:
of (10) is regular .atthe wall e.mdtherefore-more appr’opr=latefor an

.---::.-

iteration method.

V. THE NEW CAICUIATION@OD ‘“ <

a.——-
. ..—.

.=, — ,..—.~- _.. .-.

In order to cd”culate a laminar friction l~er, one”has, therefore, “’ ““.. ‘–
to solve the system (14) with the initial and bvundary conditions (15),
(16).
Mises,

The solutuion~ csm be represented (compare, for instance, lR&.nk-
reference 6, page 872) with the aid of Greents function

.

G(E,~;x,y) =— (-$FE8:W$)-~&e (27)

.=.
for the rectangle

----- :-.—

—.

..

.
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as definite integrals in the following manner

(28)

Unfortunately, the integration in
only when =( ~) is a polynome in ~,.
then not generally performable so that
for the evaluation of the integrsls.

(28) cem be carried out generally
The integration iq (29) is even
numerical methods must be applied

If one puts

(30)

and denotes

●

the Gaussion error function, G may be written in the form
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Hence, one obtains from (28) - (29) the relations
—

w-.-

/

~.

W-,7) = ~ ~ =(x) d(~(crl))y=o
=

Thus one has to plot = against

and to integrate

first against

ad to integrate
and to integrate

...

graphically, or, respectivelyY-to plot RK, for fixed

and to plot the Integrals obtafned
them. The derivatives requi~ed in

once..moreagainst
the mkulation of

.-

x,
.-

.—

-.

x. - __ _

the R= values are obtained Nom (K >2)

●

*
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Corresponding formulas are valid for the derivatives of Kl:

Since this calculation has to be carried out for vsrious pairs of
values g, q, the procedure is rather extensive even though the abscissa
functions may be calculated once for all. Since for determination of
a velocity profile at a point ~ only the profiles lying shortly shead
need be known more exactly -the profiles lying farther back having little
influence on the calculation at the point ~ -information about a few ,
profiles at larger distances before -d about several profiles shortly
ahead is sufficient for calculating the profile at a point ~.

No general statements may be made so far conce~ing the convergence
of the iteration method or an estimation of errors. The n~rical calcu-
lation (compare section Vl) proved that the ~ values rapidly decrease

in the proximity of the stagnation point whereas in the fu@her course
of the boundary layer, particularly in the neighborhood of the separation

. point, the convergence seems to be less favorable.

VI. lmAMeLE

In order to test the iteration method, at first the velocity
distribution at,the stagnation point was c~culated”with the aid-of the
ordinery differential equation resulting from (21) for ~ . 0. In
figure 1, the first approximations are compared with the solution
calculated b“yHiemenz (reference 7) and HeAree (reference 8). Thus the
solution is approximated from one side by the iteration method.
u
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The laminar friction layer-on a
as a further example. The potential
(fig. 2)

not the expertintal one according to
as a basis because the function ~(~)
polynomial in k

●

:ircul.srcylinder was cd.culated ‘” w
theoreticalvelocity distribution

.

Hiemen.z(reference 7) was taken
may then be written as a

—

The integral El may then be calculated
P

- Y-(2.f2 .
-.

in closed form. Tliefirst
.

51
approximation for Q = 1 - ~ is plotted in figure 3 for the “points

u
fig= O (stagnationpoint), fi~=l, 7c~= 2 (maximum velocity), fig= 2.6 w

(location of the lsminar separation) and x ~ = 3 agaigst —

(compare section III); figure 4 represents the third

---—

approximskion

,

As a rough estimate shows, the third approximation, in general, still

yields slightly too large values for ~; the error is growing with

increasing fi~. In the neighborhood of the wd.1, the various approxi- –
——

mations yield psrtly too large, partly too small values; hence, the
.“

.
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point of laminar separation could not be accurately determined for the
present. The calculation is to be coritinue”din order to obtain more
accurately the profiles for larger ~ values as well.

A few velocity profiles at the velocity maximum U! = O are plotted
for comparison in figure 5. Thus the profile at the flat plate calcu–
lated by Blasius (reference 9) slmost agrees with the third approxi-
mation. Probably the differences decrease still more if further
approximations sre calculated. One can see that the approximation
method accor& to Pohlheusen ‘(reference10) also yields relatively
satisfactory values. In contrast, the profile calculated according to
an approximation method of the author (reference 11) deviates somewhat
more strongly, even though the result for the displacement thiclmess 5*
is practicallycorrect.

A corresponding comparison for several.profiles in the proximity
of the separation point (fig. 6) shows a relatively gooa ~eement of ..
the third approximation with the approximation method of the author
(reference 11), whereas the corresponding Pohlhausen profile and, most
of en, the Hartree profile deviate more strongly.

On the basis of these examples and of the cases calculated
according to reference 11, where in contrast to the one-parsmeter-method
of Pohlhausen the previous”history of a profile WS+ at least partly taken
into consideration, the statement is permissible that the previous history
in the region of the pressure drop behind a sta~tion point has little
influence on the form of a boundary-layer profile, so that a one-parameter
approximation yields usable values. In the region of pressure rise,
however, it will – in order to obtain more accurate calculation -
probably slways be necesssry to consider the entire previous pressure
distribution, not only the pressure gradient .atthe respective point.

VTI. SUMMARY

The solution of the boundary-layer equations for the laminar flow
along a wall with prescribed pressure distributions is trac6d back to
the solution of a system of linear differential equations of the type
of the heat conduction equation. Due to the necessarily large
expenditure in time, this does not yet represent a method easily
applicable in practice; however, one now has the possibility of completely
calculating a few characteristic cases in cnidert-oestimate ~d sometimes
fbnprovethe usefulness of the known approxbation methods.

.

Translated by Msry L. Mahler ~
National Advisory Comnittee
for Aeronautics
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Figure l.- The veloci~ profileatthestagnationpoint.
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Figure4.- A few laminarvelocityprofilesonthe circul~ cylinder
(third approximation).
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